1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
| ➜ samples python ./python/object_detection_sample_ssd/object_detection_sample_ssd.py -m face-detection-adas-0001.xml -d MYRIAD -i parents.jpg [ INFO ] Loading Inference Engine [ INFO ] Loading network files: face-detection-adas-0001.xml face-detection-adas-0001.bin [ INFO ] Device info: MYRIAD MKLDNNPlugin version ......... 2.1 Build ........... 2020.3.0-3467-15f2c61a-releases/2020/3 inputs number: 1 input shape: [1, 3, 384, 672] input key: data [ INFO ] File was added: [ INFO ] parents.jpg [ WARNING ] Image parents.jpg is resized from (384, 672) to (384, 672) [ INFO ] Preparing input blobs [ INFO ] Batch size is 1 [ INFO ] Preparing output blobs [ INFO ] Loading model to the device [ INFO ] Creating infer request and starting inference [ INFO ] Processing output blobs [0,1] element, prob = 1.0 (826,366)-(1026,644) batch id : 0 WILL BE PRINTED! [1,1] element, prob = 0.996582 (539,173)-(693,429) batch id : 0 WILL BE PRINTED! [2,1] element, prob = 0.552734 (1094,47)-(1135,95) batch id : 0 WILL BE PRINTED! [3,1] element, prob = 0.22168 (848,22)-(886,70) batch id : 0 [4,1] element, prob = 0.0537109 (8,784)-(151,956) batch id : 0 [5,1] element, prob = 0.0395508 (1033,78)-(1070,122) batch id : 0 [6,1] element, prob = 0.034668 (1123,75)-(1158,122) batch id : 0 [7,1] element, prob = 0.0322266 (1086,14)-(1138,85) batch id : 0 [8,1] element, prob = 0.03125 (1091,110)-(1130,171) batch id : 0 [9,1] element, prob = 0.0302734 (1108,43)-(1150,93) batch id : 0 [10,1] element, prob = 0.0292969 (1151,83)-(1190,131) batch id : 0 [11,1] element, prob = 0.0273438 (1091,6)-(1133,55) batch id : 0 [12,1] element, prob = 0.0273438 (1064,73)-(1098,121) batch id : 0 [13,1] element, prob = 0.0268555 (1030,2)-(1073,42) batch id : 0 [14,1] element, prob = 0.0268555 (1058,113)-(1096,168) batch id : 0 [15,1] element, prob = 0.0268555 (1047,-3)-(1110,59) batch id : 0 [16,1] element, prob = 0.0268555 (1142,75)-(1211,165) batch id : 0 [17,1] element, prob = 0.0268555 (849,14)-(1030,236) batch id : 0 [18,1] element, prob = 0.0258789 (941,22)-(981,74) batch id : 0 [19,1] element, prob = 0.0258789 (1030,36)-(1074,89) batch id : 0 [20,1] element, prob = 0.0258789 (876,73)-(915,118) batch id : 0 [21,1] element, prob = 0.0258789 (845,112)-(886,167) batch id : 0 [22,1] element, prob = 0.0258789 (1036,110)-(1076,171) batch id : 0 [23,1] element, prob = 0.0258789 (1113,-1)-(1175,59) batch id : 0 [24,1] element, prob = 0.0258789 (1003,41)-(1094,151) batch id : 0 [25,1] element, prob = 0.0249023 (1059,0)-(1098,43) batch id : 0 [26,1] element, prob = 0.0249023 (1002,69)-(1048,123) batch id : 0 [27,1] element, prob = 0.0249023 (1133,105)-(1170,164) batch id : 0 [28,1] element, prob = 0.0239258 (966,1)-(1018,45) batch id : 0 [29,1] element, prob = 0.0239258 (876,29)-(918,79) batch id : 0 [30,1] element, prob = 0.0239258 (1056,145)-(1094,208) batch id : 0 [31,1] element, prob = 0.0239258 (861,2)-(918,63) batch id : 0 [32,1] element, prob = 0.0239258 (1010,84)-(1092,204) batch id : 0 [33,1] element, prob = 0.0239258 (1022,139)-(1076,224) batch id : 0 [34,1] element, prob = 0.0239258 (942,35)-(1072,208) batch id : 0 [35,1] element, prob = 0.0229492 (811,3)-(851,48) batch id : 0 [36,1] element, prob = 0.0229492 (1098,63)-(1131,109) batch id : 0 [37,1] element, prob = 0.0229492 (983,-9)-(1141,105) batch id : 0 [38,1] element, prob = 0.0229492 (921,81)-(1087,304) batch id : 0 [39,1] element, prob = 0.0219727 (796,3)-(835,47) batch id : 0 [40,1] element, prob = 0.0219727 (911,4)-(953,55) batch id : 0 [41,1] element, prob = 0.0219727 (797,29)-(835,79) batch id : 0 [42,1] element, prob = 0.0219727 (1154,27)-(1198,79) batch id : 0 [43,1] element, prob = 0.0219727 (969,80)-(1008,128) batch id : 0 [44,1] element, prob = 0.0219727 (1000,155)-(1046,226) batch id : 0 [45,1] element, prob = 0.0219727 (1086,145)-(1125,208) batch id : 0 [46,1] element, prob = 0.0219727 (1123,186)-(1161,252) batch id : 0 [47,1] element, prob = 0.0219727 (958,20)-(1030,84) batch id : 0 [48,1] element, prob = 0.0219727 (985,28)-(1056,105) batch id : 0 [49,1] element, prob = 0.0219727 (845,56)-(898,134) batch id : 0 [50,1] element, prob = 0.0219727 (934,65)-(986,155) batch id : 0 [51,1] element, prob = 0.0219727 (1046,99)-(1107,178) batch id : 0 [52,1] element, prob = 0.0219727 (1035,116)-(1110,241) batch id : 0 [53,1] element, prob = 0.0219727 (990,166)-(1054,269) batch id : 0 [54,1] element, prob = 0.0219727 (1065,-16)-(1192,124) batch id : 0 [55,1] element, prob = 0.0219727 (971,13)-(1140,235) batch id : 0 [56,1] element, prob = 0.0219727 (980,125)-(1108,286) batch id : 0 [57,1] element, prob = 0.0209961 (991,0)-(1043,41) batch id : 0 [58,1] element, prob = 0.0209961 (1126,0)-(1165,42) batch id : 0 [59,1] element, prob = 0.0209961 (821,35)-(856,79) batch id : 0 [60,1] element, prob = 0.0209961 (910,28)-(945,78) batch id : 0 [61,1] element, prob = 0.0209961 (997,41)-(1038,86) batch id : 0 [62,1] element, prob = 0.0209961 (1068,40)-(1103,86) batch id : 0 [63,1] element, prob = 0.0209961 (754,77)-(789,125) batch id : 0 [64,1] element, prob = 0.0209961 (819,77)-(855,123) batch id : 0 [65,1] element, prob = 0.0209961 (913,79)-(949,128) batch id : 0 [66,1] element, prob = 0.0209961 (821,112)-(861,164) batch id : 0 [67,1] element, prob = 0.0209961 (938,108)-(980,173) batch id : 0 [68,1] element, prob = 0.0209961 (1149,112)-(1189,162) batch id : 0 [69,1] element, prob = 0.0209961 (870,149)-(918,215) batch id : 0 [70,1] element, prob = 0.0209961 (1033,152)-(1070,209) batch id : 0 [71,1] element, prob = 0.0209961 (1064,188)-(1099,246) batch id : 0 [72,1] element, prob = 0.0209961 (1023,63)-(1081,131) batch id : 0 [73,1] element, prob = 0.0209961 (1054,58)-(1110,126) batch id : 0 [74,1] element, prob = 0.0209961 (1041,40)-(1125,143) batch id : 0 [75,1] element, prob = 0.0209961 (1111,99)-(1190,228) batch id : 0 [76,1] element, prob = 0.0209961 (1078,169)-(1130,261) batch id : 0 [77,1] element, prob = 0.0209961 (950,189)-(1072,367) batch id : 0 [78,1] element, prob = 0.0200195 (940,6)-(987,56) batch id : 0 [79,1] element, prob = 0.0200195 (943,81)-(978,130) batch id : 0 [80,1] element, prob = 0.0200195 (878,114)-(919,175) batch id : 0 [81,1] element, prob = 0.0200195 (910,110)-(950,170) batch id : 0 [82,1] element, prob = 0.0200195 (968,104)-(1008,159) batch id : 0 [83,1] element, prob = 0.0200195 (1128,141)-(1165,204) batch id : 0 [84,1] element, prob = 0.0200195 (1147,135)-(1188,199) batch id : 0 [85,1] element, prob = 0.0200195 (1238,903)-(1279,963) batch id : 0 [86,1] element, prob = 0.0200195 (1007,-2)-(1083,55) batch id : 0 [87,1] element, prob = 0.0200195 (1052,161)-(1105,266) batch id : 0 [88,1] element, prob = 0.0200195 (1061,145)-(1140,284) batch id : 0 [89,1] element, prob = 0.0200195 (-16,860)-(79,985) batch id : 0 [90,1] element, prob = 0.0200195 (866,-10)-(1029,107) batch id : 0 [91,1] element, prob = 0.0200195 (1173,-17)-(1280,136) batch id : 0 [92,1] element, prob = 0.0200195 (1072,32)-(1197,189) batch id : 0 [93,1] element, prob = 0.0200195 (1005,179)-(1111,359) batch id : 0 [94,1] element, prob = 0.019043 (758,2)-(795,45) batch id : 0 [95,1] element, prob = 0.019043 (968,35)-(1011,82) batch id : 0 [96,1] element, prob = 0.019043 (1003,109)-(1044,169) batch id : 0 [97,1] element, prob = 0.019043 (930,148)-(973,211) batch id : 0 [98,1] element, prob = 0.019043 (1092,191)-(1128,246) batch id : 0 [99,1] element, prob = 0.019043 (1123,225)-(1161,291) batch id : 0 [100,1] element, prob = 0.019043 (1146,19)-(1208,109) batch id : 0 [101,1] element, prob = 0.019043 (897,59)-(958,143) batch id : 0 [102,1] element, prob = 0.019043 (962,65)-(1023,137) batch id : 0 [103,1] element, prob = 0.019043 (886,83)-(971,209) batch id : 0 [104,1] element, prob = 0.019043 (995,99)-(1055,192) batch id : 0 [105,1] element, prob = 0.019043 (902,135)-(963,221) batch id : 0 [106,1] element, prob = 0.019043 (1101,145)-(1183,284) batch id : 0 [107,1] element, prob = 0.019043 (821,-17)-(946,129) batch id : 0 [108,1] element, prob = 0.019043 (940,-16)-(1076,120) batch id : 0 [109,1] element, prob = 0.019043 (819,34)-(945,205) batch id : 0 [110,1] element, prob = 0.019043 (1019,342)-(1283,785) batch id : 0 [111,1] element, prob = 0.0180664 (1147,7)-(1193,54) batch id : 0 [112,1] element, prob = 0.0180664 (756,38)-(792,89) batch id : 0 [ INFO ] Image out.bmp created! [ INFO ] Execution successful
[ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool corrupted double-linked list Aborted
|